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ABSTRACT 

An accurate estimation of biomass burning emissions is in part limited by the lack of 

knowledge of fire burning phase (smoldering/flaming). In recent years, several fire detection 

products have been developed to provide information of fire radiative power (FRP), location, size, 

and temperature of fire pixels, but no information regarding fire burning phase is retrieved. The 

Day-Night band (DNB) aboard Visible Infrared Imaging Radiometer Suite (VIIRS) is sensitive to 

visible light from flaming fires in the night. In contrast, VIIRS 4 µm moderate resolution band #13 

(M13), though capable to detect fires at all phases, has no direct sensitivity for discerning fire 

phase. However, the hybrid usage of VIIRS DNB and M-bands data is hampered due to their 

different scanning technology and spatial resolution. In this study, we present a novel method to 

rapidly and accurately resample DNB pixel radiances to M-band pixels’ footprint that is based on 

DNB and M-band’s respective characteristics in their onboard schemes for detector aggregation 

and bow-tie effect removals. Subsequently, the visible energy fraction (VEF) as an indicator of 

fire burning phase is introduced and is calculated as the ratio of visible light power (VLP) and FRP 

for each fire pixel retrieved from VIIRS 750 m active fire product. A global distribution of VEF 

values, and thereby the fire phase, is quantitatively obtained, showing mostly smoldering wildfires 

such as peatland fires (with smaller VEF values) in Indonesia, flaming wildfires (with larger VEF 

values) over grasslands and savannahs in sub-Sahel region,  and gas fares with largest VEF values 

in the Middle East. VEF is highly correlated with modified combustion efficiency (MCE) for 

different land cover types or regions. These results together with a case study of the 2018 

California Campfire show that the VEF has the potential to be an indicator of fire combustion 

phase for each fire pixel, appropriate for estimating emission factors at the satellite pixel level.  
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PUBLIC ABSTRACT 

Wildfire is an uninvited fire that takes place in a wild area like a forest or a vegetated land. 

These fires emit into the atmosphere different amount of important greenhouse gases such as 

carbon dioxide (CO2), carbon monoxide (CO), nitrous oxide (N2O), and methane (CH4) along with 

smoke particles. The emission amount of each of these gases is dependent on the fire intensity. For 

example, when the wildfire burns with intense flames, it emits mostly CO2 and H2O. In contrast, 

as the flaming intensity reduces, the emission of CO2 decreases while the emission of CO 

increases. Hence, it is important to develop techniques to characterize the fire intensity from 

satellite sensors globally. In the current study, a ratio, which is fire visible energy rate over the fire 

total energy rate for a satellite pixel, is theoretically derived based on the physics law that shows 

the fire intensity. 
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CHAPTER 1. INTRODUCTION 

Biomass burning has a pivotal role in Earth's atmosphere and climate system. On average 

348 Mha of land is burned by wildfires and prescribed fires throughout the world each year (Giglio 

et al. 2013). These fires emit into the atmosphere radiatively important greenhouse gases 

(including their precursors) such as carbon dioxide (CO2), carbon monoxide (CO), nitrous oxide 

(N2O), and methane (CH4) along with smoke particles like black carbon (BC) and organic carbon 

(OC) (Andreae and Merlet 2001; Ichoku and Ellison 2014; Ichoku and Kaufman 2005). Such 

greenhouse gases and smoke particles disturb atmospheric radiative balance by the scattering and 

absorption of solar radiation affecting climate and air quality regionally and globally (Kaufman et 

al. 1991; Penner et al. 1992; Ramanathan and Carmichael 2008; Wang and Christopher 2006). For 

example, greenhouse gases have a positive radiative forcing by absorbing the earth’s longwave 

radiation and emitting it back to the surface, while the smoke particles can lead to radiatively 

cooling effect at the surface by scattering and absorbing incident solar radiation in the atmosphere. 

While qualitatively understood, the overall biomass burning effects on climate and air 

quality are highly uncertain due to discrepancies in the estimation of biomass burning emission 

amount and the OC/BC ratio that regulates the single scattering albedo of the smoke particles. For 

example, Ge et al. (2014) conducted the WRF-Chem simulation using different OC/BC ratios in 

smoke emissions, and showed that the smoke direct radiative forcing increases by a factor of 2 as 

the OC/BC ratio changes from 10 to 3.5. Also, Feng et al. (2014) showed that the estimation for 

monthly-total smoke (OC + BC) emissions from 9 different inventories can differ by a factor of 

12 over northern sub-Saharan Africa (15°W–42°E, 13°S–17°N). These studies highlight the 

importance of OC/BC ratio for both radiative forcing calculations and for resolving (at least 

partially) the discrepancies of the total emission of OC and BC in emission inventories. 
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Most emission inventories use constant emission factors (EF, grams of greenhouse gas or 

particulate matter emitted per kilogram burned dry matter) for each vegetation type to estimate the 

emissions for any wildfire. This formulation is an oversimplification because emission factors are 

dependent on the fire combustion efficiency (CE, the ratio of carbon emitted as CO2 to the total 

carbon emitted) that in turn varies with fire combustion phase and can vary highly with space and 

time, even in the same region for the same surface type (Akagi et al. 2011; Reid et al. 2005).  A 

higher value of CE (e.g., ~ 0.9) generally corresponds to the flaming phase when the biomass fuel 

load burns with flames emitting mostly CO2, H2O, and NOX and with higher temperature BC has 

the ability to form.  In contrast, lower values of CE, which is due to the smoldering nature of fire, 

results in a decrease in the emission of CO2 accompanied by an increase in the emission of CO 

and OC aerosol (Ward and Hardy 1991; Yokelson et al. 1996). Hence, it is important to develop 

techniques to characterize the spatiotemporal variation of fire combustion phase from satellite 

sensors.  

With the advent of polar-orbiting and geostationary satellites in the 1970s, global 

monitoring of fires becomes feasible. Utilizing top-of-atmosphere radiance measured in different 

wavelengths by satellite sensors, many fire algorithms were developed to characterize wildfires. 

For example, different sensors have been used to monitor fires, including Advanced Very High 

Resolution Radiometer (AVHRR) (Dozier 1981), the Defense Meteorological Satellite Program 

(DMSP) Operational Linescan System (Elvidge et al. 1996), the Along-Track Scanning 

Radiometer (ATSR) (Mota et al. 2006), the Visible and Infrared Scanner (VIRS) (Giglio et al. 

2000), the Moderate Resolution Imaging Spectroradiometer (MODIS) (Kaufman et al. 1998), the 

Visible Infrared Imaging Radiometer Suite (VIIRS) (Csiszar et al. 2014; Schroeder et al. 2014), 

the Geostationary Operational Environmental Satellite (GOES) Imager (Prins and Menzel 1992, 
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1994) and the Spinning Enhanced Visible and Infrared Imager (SEVIRI) (Roberts et al. 2005; 

Roberts and Wooster 2008). Also, In the absence of solar contamination during the night, specific 

algorithms for nighttime fire detection using short-wave infrared band (SWIR) centered near 1.6 

μm  (Elvidge et al. 2013) and visible-light band centered near 0.7 μm (Elvidge et al. 2013; Polivka 

et al. 2016) were demonstrated for VIIRS onboard the Suomi National Polar-orbiting Partnership 

(S-NPP) satellite. The detailed specifications for each fire detection algorithm can be found in 

Table 1. While significant progress has been made toward detecting and characterizing active 

wildfires using remote sensing satellite data, there is no quantitative characterization of fire 

combustion phase in these satellite-based fire characterization products. The aim of this study is 

to develop a technique to measure fire combustion phase from space using satellite remote sensing 

data, thereby providing potential means to improve fire emission estimation, in particular, the 

emission factors for each individual fire. 
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Table 1. Summary of operational satellite remote sensing fire products. 

Satellite 

 

Sensor 

 

Algorithm 

 

Spatial 

Resolution 

(at nadir) 

Spectral 

Channel 

(µm) 

Main Output Day/Night 

NOAA-15 

NOAA-16  

NOAA-17 

AVHRR Fire Identification,  

Mapping and Monitoring 

Algorithm (FIMMA)1 

 

1 km 3.7, 10.8 Fire pixel 

geolocation 

Day & Night 

Terra 

Aqua 

MODIS MODIS Active Fire2 1 km 4, 11 Fire pixel 

geolocation, 

surface background 

temperature, FRP 

 

Day & Night 

Suomi NPP VIIRS VIIRS M-Band Active 

Fire3 

750 m 4, 11 Fire pixel 

geolocation, FRP 

Day & Night 

Suomi NPP VIIRS VIIRS I-Band Active Fire4 

 

375 m 0.64, 0.86, 

1.6 

Fire pixel 

geolocation, 

FRP 

Day & Night 

Suomi NPP VIIRS VIIRS Nightfire5 750 m 1.2 1.6, 

3.7, 4 

Fire pixel 

geolocation, fire 

size, fire 

temperature, 

surface background 

temperature, FRP 

Night 

Meteosat 

Second 

Generation 

(MSG) 

SEVIRI Active Fire Monitoring 

(FIR)6 

3 km 

 

3.9, 10.8 Fire pixel 

geolocation, FRP 

Day & Night 
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1 (Giglio et al. 1999; Li et al. 2001; Li et al. 2000); 2 (Giglio et al. 2003; Giglio et al. 2016; Justice et al. 2002); 3 (Csiszar et al. 2014); 4 (Schroeder et al. 2014); 5 

(Elvidge et al. 2013); 6 (Roberts et al. 2005; Roberts and Wooster 2008); 7 (Prins and Menzel 1992, 1994)

Table 1 - continued      

GOES-13 

GOES-15 

GOES 

Imager 

Wildfire Automated 

Biomass Burning 

Algorithm (WF-ABBA)7  

 

4 km 3.9, 11.2 Fire pixel 

geolocation, fire 

temperature, fire 

size 

Day & Night 
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Fire combustion phase is dependent on fuel content, relative humidity, and temperature 

which define the nature of combustion reaction. If the reaction happens heterogeneously at the 

surface of solid fuels (vegetation and wood), the combustion is without flames producing 

incomplete-oxidized products (Ohlemiller 1985; Rein 2009).  In contrast, when the oxidation 

happens homogeneously between oxygen in the air and the gas pyrolyzate, combustion products 

are soot and complete-oxidized gases. These products absorb enough energy during the 

combustion process leading them to emit visible radiation as a flame (Rein 2009; Sato et al. 1969). 

Combustion efficiency usually reported by modified combustion efficiency (MCE) which is 

defined as the ratio of carbon emitted as CO2 to the total carbon emitted as CO2 and CO. In fire 

emission inventory estimates, EF is normally defined as a function of MCE. Although MCE can 

be identified through lab or in-situ measurements (Akagi et al. 2011; Ferek et al. 1998; Ward and 

Hardy 1991), it is difficult to determine MCE and therefore EF on a near real-time basis in an 

open-environment where both flaming and smoldering occur simultaneously (van Leeuwen and 

van der Werf 2011; Ward and Hardy 1991). This results in a lack of availability of MCE data for 

fires routinely and globally.  

This study is the first attempt to use VIIRS to characterize the dominant fire combustion 

phase quantitatively and globally, and link that to the fire CE from which the emission factors for 

BC and OC can be derived for a given surface type and an individual fire. In section 2, we illustrate 

the  VIIRS Day-Night band (DNB) and moderate-resolution band (M-band) characteristics and 

their spatial mismatch problem at the pixel level. In section 3, we present the development of a 

method to efficiently collocate DNB pixel radiances to M-band pixel resolution as DNB and M-

bands have significant differences in the ways they scan. Once DNB and M-band data are 

homogenized, we describe the method to retrieve a variable named as visible energy fraction 
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(VEF) for each fire pixel, and link that to the emission factors that are used around the globe. 

Section 4 presents the results for different fire classifications based on their VEF values and global 

distribution of fire combustion phase including the first global fire combustion efficiency map for 

the year 2015. In the end, section 5 concludes the paper.  
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CHAPTER 2. VIIRS: M-BAND AND DNB SPATIAL MISMATCH AND DATA USED 

VIIRS is a remote-sensing instrument flying on S-NPP and NOAA-20 (also referred to as 

JPSS-1). The NOAA-20 is the first in a new series of polar-orbiting environmental satellites, called 

the Joint Polar Satellite System or JPSS, created in partnership between the National Oceanic and 

Atmospheric Administration (NOAA) and National Aeronautics and Space Administration 

(NASA). VIIRS will be flown onboard three more satellites (JPSS-2, JPSS-3, JPSS-4) to be 

launched in the next 10-15 years, and VIIRS will be carried on each of these satellite platforms 

(Goldberg et al. 2013).  

VIIRS has 22 channels with a nominal spatial resolution of 375 m in the five imagery bands 

(I-bands) and 750 m in 16 moderate resolution bands (M-bands), covering a spectral range from 

0.412 μm to 12.01 μm (Table S1). Included on VIIRS is the unique DNB that measures radiances 

over a broadband spectrum from 0.4 to 0.9 µm (Cao et al. 2014; Wolfe et al. 2013). DNB minimum 

detectable radiance (Lmin) is 3×10-9 W·cm-2·sr-1 during the night, which coincides with a 

temperature near 630 K for a fire occupying half of the pixel (Fig. 1a), to a maximum value of 

0.02 W·cm-2·sr-1 in the presence of sunlight. Fig .1a shows atmospherically corrected DNB 

radiances for different fire temperatures and fractions. We assumed the night to be moonless, and 

did not take into account any moon effect in our simulation. The simulation was conducted by 

Unified Linearized Vector Radiative Transfer Model (UNL-VRTM) (Wang et al. 2014) for each 

fire pixel with 300k surface temperature and a uniform background aerosol optical depth around 

0.1 (smoke particles). The black line represents Lmin for the DNB. Furthermore, As Fig. 1b shows, 

DNB has a broad spectral response with a high dynamic range which is sensitive to the flaming 

fire temperatures more than 600 k. As a result of that, VIIRS DNB radiances contain strong 
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unsaturated signal from fire flames without major background signal contamination from the sun 

during nighttime. 

 

Fig. 1. (a) Contour plot of simulated DNB radiance for different fire temperatures and fractions 

during nighttime (moon effect is not included) using Unified Linearized Vector Radiative Transfer 

Model. The black line shows the minimum radiance (Lmin) that DNB sensor can detect. The fires 

that fall into the left side of the white line are not detectable by DNB sensor. (b) Plot of VIIRS 

Day-Night band (DNB) and 4 µm moderate-resolution band #13 (M13) spectral responses along 

with different Plank curves for different temperatures. DNB is highly sensitive to high temperature 

(flaming) fires in the night while M13 is sensitive to all fire temperatures. 

The VIIRS 750 m active fire (AF) product provides information on active fires and FRP. 

The VIIRS AF algorithm almost exclusively builds on the MODIS fire detection algorithm which 

is based on multi-spectral tests using the infrared channels (Giglio et al. 2016). Also, the VIIRS 

AF algorithm derives FRP based on the VIIRS 4 µm moderate resolution band #13 (M13) radiance 
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proposed by Wooster et al. (2005). However, to obtain visible light information for a fire pixel 

detected by infrared M-band, it is necessary to ensure that DNB pixels are properly matched to the 

M-band pixels. This matching is complicated by the fact that DNB and M-bands are completely 

different in their mechanics and operations. Subsequent sections describe these fundamental 

differences between DNB and M-bands in their operations to carry the observation of the earth 

and atmosphere and their ways to aggregate samples observed by individual detectors to form 

pixels. This is then followed by the description of DNB and M-band mismatch and the data 

products used for this study. 

2.1. M-band and DNB differences in onboard processing 

Each M-band has 16 detectors, and consequently, each of the M-band scans is comprised 

of 16 scan lines. Hereafter, the region consisting of these detector lines in one M-band scan is 

referred to as one scan zone. The M-bands use a whiskbroom procedure scanning the earth across 

the track of the satellite. (Cao et al. 2014; Polivka et al. 2015; Polivka et al. 2016; Wolfe et al. 

2013). The whiskbroom scanning causes the pixel size to grow as the scan angle increases 

producing the so-called bow-tie effect. This pixel size growth causes some of the scan lines in two 

consecutive scan zones to overlap each other far from nadir, resulting in redundant sampling. For 

example, for the M-band, the last 9 scan lines (in order of across-scan direction) in the first scan 

zone overlap with the first 9 scan lines in the next scan zone, as shown in Fig. 2a. The resulting 

overlapped region in part is flagged onboard and removed by trimming 4 overlapped scan lines (2 

from each scan zone) at the edge (corresponding to a scan angle around 56.28°) of the scan zone. 

However, these overlapped pixels are not completely flagged onboard and 5 more scan lines 

remained overlapped near the edge.  
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Fig. 2. View of 2 consecutive VIIRS scan zones (at the edge) overpassing Bani River in Africa. 

(a) Before the bow-tie effect correction there are 9 overlapped scan lines from which 4 are trimmed 

onboard, 2 bottommost Scan1 scan lines and 2 topmost Scan2 scan lines. The other redundant scan 

lines are detected using respective DNB signals which results in 3 redundant scan lines from Scan2 

and 2 from Scan1. (b) Consecutive scan zones after the bow-tie effect correction. 

In addition to the bow-tie effect, within each scan zone, there are three symmetrical 

aggregation zones for both M-band on each side of the scan zone (Table S2) (Polivka et al. 2015). 

Within the M-band field-of-view, each scan line has 3200 pixels after aggregation of 6304 detector 

pixels, and each M-band’s detector samples a distance of 259 meters along the scan and 742 meters 

across the scan at the nadir on the earth’s surface. The aggregation zones for the left side of the 

scan zone are denoted by blue dashed lines in Fig. 3.  In aggregation zone 3:1 (scan angles between 
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0˚and 31.59˚),  3 consecutive samples (detector footprint) made by individual detectors along the 

scan are aggregated to comprise one pixel that has a size of  776 (=259×3) meters along the scan 

and 742 meters across the scan at the nadir. In aggregation zone 2:1 (scan angles between 31.59˚ 

and 44.68˚), two consecutive samples from each detector along the scan line comprise one pixel. 

In aggregation zone 1:1 (scan angles larger than 44.68˚), no aggregation happens as the along-scan 

growth in size makes each sample large enough as a square-like pixel. Without aggregation, along-

scan pixel growth size is a factor of 6 of the pixel size near nadir. As a result, by aggregating 3 

detector samples near nadir, along-scan pixel growth size will be a factor of 2 (instead of 6 as 

compared to a nadir pixel), which is the same as the growth factor across the scan (from nadir to 

the edge of the scan zone) , and so, the width and length of the pixel are similar throughout the 

scan zone.  

While a similar aggregation strategy is applied, DNB uses charge-coupled device (CCD)  

arrays with 672 detectors across the scan (Liao et al. 2013). The large number of detectors provide 

the capability of aggregating small samples retrieved from detectors both along and across the 

scan. Contrary to M-band, DNB has 32 symmetrical aggregation schemes on each side of the scan 

(Table S3) to keep the similar pixel size (742 m) throughout the whole scan. In Fig. 3 the bumps 

in DNB lines indicate starting of a new aggregation zone which has a different number of across-

scan aggregated samples than that of the adjacent aggregation zones. The unique aggregating 

scheme in DNB almost removes the bow-tie effect (or the pixel area overlap) completely. 

Consequently, DNB pixels have approximately the same size throughout the whole scan while M-

band pixels are affected by the bow-tie effect. 
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Fig. 3. VIIRS M-band/DNB scan zone for the whole swath projected on a flat plane. The DNB 

pixels keep the same size throughout the whole scan while the M-band pixel size grows as a 

function of scan angle. Near the edge, there is an offset (Offset1 & Offset2) of 8 scan lines between 

DNB and M-band. The bumps in the DNB scan lines indicate beginning of a new DNB aggregation 

zone with a different number of across-scan aggregated samples than its adjacent aggregation 

zones which constitutes a collocation segment. Subset. a represents the zoom-in view of the nadir 

M-band and DNB pixels in which the denoted along-scan empty space between M-band and DNB 

pixels is due to their nominal spatial resolution mismatch. Subset. b shows the zoom-in layout of 

the edge M-band and DNB pixels. Each large near-edge M-band pixel can overlap with up to 12 

DNB pixels from 4 different DNB scan lines. Note, the different scales for X and Y axes makes 

the figure exaggeratedly look curvy. 

 

2.2. M-band and DNB mismatch 

As a result of the DNB and M-band on-board processing and formulation differences, two 

kinds of mismatch exist between VIIRS M-band and DNB pixels, even though their respective 

scan zone covers the same portion of the area in the VIIRS ground swath. The first type of 

mismatch is due to the difference between the nominal spatial resolution of the DNB and M-band 

pixels at nadir. As Fig. 3a shows, M-band and DNB nadir pixels match perfectly in across-scan 

direction (Y direction), where the top and bottom sides of the pixels overlap each other while the 
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left and right sides of the pixels in the along-scan (X) direction do not match exactly, rendering a 

small offset for the same nadir location in the same scan line.  

The second kind of mismatch between M-band and DNB pixel footprints results from their 

different pixel size growth that in turn arises from their difference in treating the bow-tie effect. 

This mismatch is denoted by arrows (offset 1 and offset 2) for edge pixels in Fig. 3 where only 8 

scan lines (in the center) of M-band scan zone are fully within the DNB scan zone, and fully 

overlap with the 16 DNB scanlines in the same DNB scan zone, while the remaining 8 scale lines 

of M-band are completely outside of  DNB scan zone at the edge, despite having full overlap with  

those DNB scan lines at the nadir.  Hence, an M-band pixel at the scan edge can overlap with up 

to 12 DNB pixels spreading over 4 adjacent DNB scan lines (Fig. 3b). 

 The DNB and M-band mismatch hinders the combined use of valuable DNB radiance with 

M-band radiances for fires that require precise georeferencing for the exact same fire area. 

However, since both DNB and M-band covers the same swath for the same scan zone at the nadir 

and their mismatch pattern is repeatable for each scan zone, it provides the opportunity to collocate 

DNB to M-band for one scan zone, and save the results to produce a look-up table which can be 

applied to any other scan zone (as described in section 3). 

2.3. Data Used 

We obtain the VIIRS Suomi NPP data including M-band geolocation product 

(VNP03MOD) and DNB geolocation product (VNP03DNB) from NASA level-1 and atmosphere 

archive & distribution system (LAADS) (https://ladsweb.modaps.eosdis.nasa.gov/) to implement 

DNB to M-band collocation. Also, We retrieve Level-1 B calibrated DNB radiance product 

(VNP02DNB) and VIIRS 750 m active fire (AF) product (VNP14) (Csiszar et al. 2014) from 

(LAADS) (https://ladsweb.modaps.eosdis.nasa.gov/) for 2017 (only nighttime). Fig. S1 in 

https://ladsweb.modaps.eosdis.nasa.gov/
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supplementary material shows the global distribution of nighttime fire pixels for 2017.  Moreover, 

we retrieve dominant vegetation type information from MODIS Land Cover Type Climate 

Modeling Grid (0.05˚) product (Short Name: MCD12C1) (Friedl et al. 2010) which is obtained 

from land processes distributed active archive center (LP DAAC) (https://lpdaac.usgs.gov/). 

MCD12C1 uses the International Geosphere-Biosphere Program (IGBP) classification stratifying 

the earth’s surface cover into 17 categories. 

We utilize gas flare location data from VIIRS Nightfire flares only product (Elvidge et al. 

2016) obtained from image and data processing by NOAA's national geophysical data center 

(https://ngdc.noaa.gov/) to classify flare-type grids. Fig. S2 in supplementary material shows the 

gas flare locations that are used in this study.   

We use global fire emissions database version4 (GFED4) (https://www.globalfiredata.org/)  

(van der Werf et al. 2017) data to calculate MCE (= 
CO2

CO2+CO
)  for each GFED4 grid (0.25˚) which 

is used as a check for the results. GFED4 reports monthly emission estimation (grams) of different 

trace gases like CO and CO2 for different vegetation types for the globe. It also provides these 

estimations for 14 basis regions. 

2.4. Data Processing 

We extract FRP data from VIIRS AF for all the detected nighttime (having a solar zenith 

angle greater than 85˚) fire pixels for 2015 and 2017 globally. Also, we repeat the analysis 

including only fire pixels with a confidence level more than 50%, and the results are almost 

identical. Consequently, we include all the fire pixels in our analysis. Then, we use the collocation 

algorithm to obtain the collocated DNB radiance and, calculate VEF for each of those (M-band) 

fire pixels. We regrid the pixels into different grid resolution according to the application. For 
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example, for characterizing VEF for different surface cover types we regrid VEF pixel data into 

MODIS land cover type grids (0.05˚), for comparison purposes we use GFED4 grids (0.25˚) to 

compare VEF with MCE, and finally, we regrid VEF pixel values into 1˚ grids to show a global 

map of VEF. We only use the grids with at least 5 fire pixels and report annual-averaged VEF for 

each grid by averaging pixel VEF values in each grid.  

We employ VEF to investigate the nighttime fire combustion phase based on the different 

MODIS IGBP land cover types (Fig. 9b, Table 2) and gas flares (Fig. S2). Note, we consider 

MODIS savannas and woody savannas as one land cover type (savannas), and open/closed 

shrublands as simply shrublands. Furthermore, we show VEF capability to characterize fire 

combustion phase by correlating it to the MCE values derived from GFED4 2015 emission data 

for 14 GFED4  basic regions (Fig. 4a) as well as 6 GFED4 general biomes plus the gas flares (we 

assume gas flaring MCE to be 0.99 as the gas flares are mostly comprised of flames). For that 

purpose, we reclassify the MODIS land cover types into the broad vegetation types that are used 

by GFED4 for reporting emission factors (Akagi et al. 2011) and dry matter emissions (Table 2). 

In this way, we can compare and correlate VEF and MCE for the same biomes. However, MODIS 

land cover product does not provide peatlands locations while peat is one of the biomes used by 

GFED4. As a result, we find the peatland grids by deriving the fraction of peat vegetation for each 

GFED4 grid (0.25˚); if more than 70% of a grid land cover is peat, we classify it as peatlands 

which are located at regions of Sumatra and Kalimantan (Fig. 4b). However, in 2017 there were 

not enough fire pixels in these peatland grids resulting in inadequate VEF information for peats. 

Consequently, we use the 2015 VIIRS AF data because of the large peatland fire incident which 

happened in Indonesia (Huijnen et al. 2016) providing us with enough valid peatland grids so that 
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we can retrieve a reliable VEF for peat vegetation type. Finally, we illustrate how VEF can show 

the wildfire intensity changes during its lifetime by analyzing wildfire Camp Fire. 

Table 2. MODIS land covers reassigned to more general vegetation types as in GFED4. 

MODIS Land Cover Type Clustered Vegetation Type 

Evergreen needleleaf forest (ENF) Tropical, Temperate, Boreal1 

Evergreen broadleaf forest (EBF) Tropical, Temperate, Boreal 

Deciduous needleleaf forest (DNF) Tropical, Temperate, Boreal 

Deciduous broadleaf forest (DBF) Tropical, Temperate, Boreal 

Mixed forest (MF) Tropical, Temperate, Boreal 

Closed shrublands (Shrub) Savanna 

Open shrublands (Shrub) Savanna 

Woody savannas (Sava) Savanna 

Savannas (Sava) Savanna 

Grasslands (Grass) Savanna 

Croplands (Crop) Agricultural 
1 If latitude between 30N and 30 S: Tropical, if latitude between 30N/S and 50N/S: Temperate, and if latitude larger 

than 50N: Boreal 

 

 

 

Fig. 4. (a) Map of 14 basic regions used by GFED. (b) Peatland locations in cyan-colored boxes 

used in this study. Each grid land cover is comprised mostly from peats (70%). The background 

base map is from ESRI (Environmental Systems Research Institute) world imagery service. 
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CHAPTER 3. ALGORITHM 

3.1. Collocating DNB to M-band  

The principle of collocation is to aggregate different DNB pixels into M-band resolution 

by assigning them different weights according to their respective area and the corresponding M-

band pixel area. We collocate DNB to M-band for a scan using area-weighting, so the energy is 

conserved in the collocation process. We choose a scan specifically near the equator that has 

minimal curvature effect to reduce errors in calculating areas of pixels. The collocation process is 

summarized as a flow chart in Fig. 5.  

For the first step in the colocation algorithm, we split up one scan zone of DNB in the 

along-scan direction (X-axis) into smaller segments called collocation segments, so that we can 

implement the collocation process for each of these small segments separately to reduce distortion 

errors. We use the DNB aggregation zones as our index for collocation segments. If two 

consecutive aggregation zones have the same number of across-scan aggregating detector samples 

(as described in section 2.1), they will be assumed as a single collocating segment because the 

pattern along the scan will remain consistent (Fig. 3). There are 64 aggregation zones for one DNB 

scan zone (32 on each side of nadir) which comprises 46 collocation segments (23 on each side). 

The details of the pixel ranges for each collocation segments are provided in Table S4 in the 

supplementary material.    
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Fig. 5. Flowchart demonstrating the collocation process. 

Second, for each collocation segment, pixels are projected onto the earth’s surface and the 

projected pixels centroids are used to calculate each pixel corners and area. Albers equal area 

projection method is used to project pixel lat/lon coordinates to a flat surface because it is 

appropriate for satellite swath data as the distortion is minimal in east to west direction in the scan 

zone (Yildirim and Kaya 2008). This flat surface is a two-dimensional coordinate system where 

the horizontal axis (X-axis) corresponds to the projected longitude and the vertical axis (Y-axis) 

represents the projected latitudes in meters. The origin point (X=0, Y=0) of the flat surface 

corresponds to the lower left pixel in the collocating segment. Fig. S3 shows the projected DNB 

and M-band pixels comprising collocation segment 7. 
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In the third step of the algorithm, for each M-band pixel in the scan zone of DNB, the 

overlapped DNB pixels for each M-band pixel are identified, and their area weights are calculated. 

This step will be applied to all M-band pixels in each collocation segment. Then, we calculate the 

weight of each intersecting DNB pixel. We denote the given M-band pixel as 𝑀𝑖,𝑗 where the 

subscript 𝑖  shows the scan line (from 1 to 16) and 𝑗 is the number of pixels along that scan line 

(from 1 at nadir to 3200 at edge). Similarly, a DNB pixel is denoted as 𝐷𝑙,𝑘 where 𝑙 is the scan line 

(from 1 to 16) and 𝑘 is the pixel number (from 1 to 4064). As shown in Fig. 6, 𝑥𝑀𝐿𝑅  and 𝑥𝐷𝐿𝑅  

represents the pixel lower-right X coordinates (along X axis) of respectively 𝑀𝑖,𝑗 and  𝐷𝑙,𝑘 on the 

earth along the scan in meters while  𝑥𝑀𝐿𝐿  and 𝑥𝐷𝐿𝐿  are the lower-left X coordinates along the 

scan. Similarly, 𝑦𝑀𝑈𝐿 and 𝑦𝐷𝑈𝐿 are the upper-left Y coordinates (along Y axis) of respectively 𝑀𝑖,𝑗 

and  𝐷𝑙,𝑘 across the scan in meters whilst 𝑦𝑀𝐿𝐿 and 𝑦𝐷𝐿𝐿 are the lower-left coordinates of each 

pixel. The 𝐷𝑙,𝑘 is intersected with 𝑀𝑖,𝑗 if: 

∆𝑋 = 𝑀𝑖𝑛(𝑥𝑀𝐿𝑅 , 𝑥𝐷𝐿𝑅) − 𝑀𝑎𝑥(𝑥𝑀𝐿𝐿 , 𝑥𝐷𝐿𝐿) > 0  (1) 

∆𝑌 = 𝑀𝑖𝑛(𝑦𝑀𝑈𝐿 , 𝑦𝐷𝑈𝐿) − 𝑀𝑎𝑥(𝑦𝑀𝐿𝐿 , 𝑦𝐷𝐿𝐿) > 0  (2) 

Where the minimum of the two coordinates denotes the smaller value of those while maximum 

means the larger coordinate value. Once the intersection is detected, the ratio of the intersected 

area of DNB pixel to M-band pixel area, which is the area weight, is calculated as follows: 

𝑆𝑖,𝑗
𝑀=(𝑥𝑀𝐿𝑅 - 𝑥𝑀𝐿𝐿) × (𝑦𝑀𝑈𝐿 - 𝑦𝑀𝐿𝐿)   (3) 

S (𝐷𝑙,𝑘 , 𝑀𝑖,𝑗)= ∆𝑋 × ∆𝑌  (4) 

W (𝐷𝑙,𝑘 , 𝑀𝑖,𝑗) = 
S (𝐷𝑙,𝑘 , 𝑀𝑖,𝑗)

𝑆𝑖,𝑗
𝑀       (5) 
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Where 𝑆𝑖,𝑗
𝑀  is the 𝑀𝑖,𝑗 pixel area and S (𝐷𝑙,𝑘 , 𝑀𝑖,𝑗 ) is the area that 𝐷𝑙,𝑘 intersected with 𝑀𝑖,𝑗. The 

weight of 𝐷𝑙,𝑘 for 𝑀𝑖,𝑗  is denoted by W (𝐷𝑙,𝑘 , 𝑀𝑖,𝑗 ). After we calculate the DNB area weights, 

the collocated DNB radiance can be calculated as follows: 

𝑅𝑀𝑖,𝑗

𝐷   = ∑ 𝑊 (𝐷𝑙,𝑘 , 𝑀𝑖,𝑗 )𝑙,𝑘 ×𝑅𝑙,𝑘
𝐷          (6) 

Where  𝑅𝑀𝑖,𝑗

𝐷 is the DNB radiance for 𝑀𝑖,𝑗 and 𝑅𝑙,𝑘
𝐷  is the radiance retrieved from the intersected 

DNB pixel (𝐷𝑙,𝑘). It should be noted that the sum of the intersected DNB pixels weights will add 

up to 1 (∑ 𝑊 (𝐷𝑙,𝑘 , 𝑀𝑖,𝑗 )𝑙,𝑘 = 1) for each 𝑀𝑖,𝑗 that is completely overlapped with DNB pixels.  

 

Fig. 6. Detecting intersection area between M-band and DNB pixel. The two pixels are overlapped 

if (𝑥𝐷𝐿𝑅 − 𝑥𝑀𝐿𝐿)  and (𝑦𝐷𝑈𝐿 − 𝑦𝑀𝐿𝐿) are simultaneously larger than zero. Subscripts of DLL, DLR, 

DUL, MLL, MLR, and MUL stand for DNB lower left, DNB lower right, DNB upper left, M-band 

lower left, M-band lower right, and M-band upper left respectively. The X axis corresponds to 

projected longitudes while Y axes represent projected latitudes. 

 

We store the index of each M-band pixel and its corresponding intersected DNB pixels 

indices and weights as a collocation look-up table (LUT).  Also, we add the M-band pixel areas to 
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the pixel-area LUT for later use. The collocation LUT details are presented in supplementary 

material section 1. These LUTs can be applied to any other scan zone because satellite scan zone 

characteristics, such as pixels areas or pixel size growth pattern are inherent and do not change for 

different scan zones. For example, a near-equator scan zone’s pixels areas are nearly identical for 

a scan zone in Polar Regions. Furthermore, the area-weighted collocation method can be applied 

to any other data with different spatial footprints which need to be resampled to each other. The 

resampling process for an M-band granule (consists of 3232 scan lines) by applying collocation 

LUT takes around 3 seconds (using an inexpensive laptop) while it can take up to hours 

implementing the resampling process without using LUT. The resampled DNB radiances for M-

band pixels give us the capability to characterize fire combustion efficiency for each nighttime fire 

pixel. 

3.2. M-band bow-tie effect and pixel overlap removal  

We detect M-band bow-tie affected pixels that are overlapped on each other from two 

consecutive scan zones using the same technique described in section 3.1. We use 50% as the 

threshold for detecting the overlap; if the two M-band pixels overlap more than 50% of their area, 

they are labeled as overlapped. Still, it is not clear to remove which of the two overlapped pixels 

as redundant. We use weights of DNB to decide which pixel is redundant. We sum up the DNB 

weights for each overlapped M-band pixel and remove the M-band pixels that have minimum 

values from corresponding DNB pixels in the same scan zone. For example, near the edge, we 

detect 9 scan lines to be overlapped between two consecutive scans (Fig. 2a). According to the 

edge offset (Offset1 & Offset2) of 8 scan lines between DNB and M-band, the last 4 lines from 

the scan zone 1 and the first 4 lines from the second scan zone has no DNB pixel overlap; hence 

they are labeled as redundant pixels (Fig. 2a). Similarly, although the last overlapped line between 
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two scan zones has DNB signals from both scan zones, the DNB weights from the first scan zone 

are larger than second scan zone which results in labeling one more scan line from scan zone 2 as 

redundant. As a result, we remove the 4 bottommost scan lines from scan zone 1 and the 5 topmost 

scan lines from scan zone 2 as the redundant pixels (Fig. 2b). We detect all the overlapped pixels 

along the whole scan zone for two consecutive scans, and store the results as a bow-tie look-up 

table.  

3.3. Visible Energy Fraction (VEF) 

Polivka et al. (2016) showed that VIIRS DNB radiance in the night time can be an indicator 

of fire combustion phase of smoldering versus flaming. However, no quantitative measurement 

was presented to quantify the CE. Considering the fact that the VIIRS active fire (AF) product 

provides near real-time fire radiative power (FRP), is an estimate of instantaneous radiative energy 

from actively burning fires (Csiszar et al. 2014; Kaufman et al. 1998; Peterson et al. 2013; Wooster 

et al. 2005) for each fire pixel, we derive visible energy fraction (VEF) to quantitatively measure 

the flaming/smoldering phase for each fire pixel. VEF of a fire is defined as the ratio of its visible 

light power (VLP) to FRP. The visible energy rate for each fire pixel is calculated as follows: 

𝑉𝐿𝑃 = 𝐿𝑣𝑖𝑠𝑖𝑏𝑙𝑒 × 𝐴𝑝𝑖𝑥𝑒𝑙 × π ×10-6   (7) 

Where 𝑉𝐿𝑃 (in megawatts) is the fire pixel visible energy , 𝐿𝑣𝑖𝑠𝑖𝑏𝑙𝑒 (in W·cm-2·sr-1 ) is the 

collocated visible radiance from the fire (𝑅𝑀𝑖,𝑗

𝐷 ), 𝐴𝑝𝑖𝑥𝑒𝑙  (in cm2) is the M-band pixel area, π is a 

mathematical constant approximately equals to 3. 14 (in steradians), and 10-6 is the unit conversion 

factor from Watts to megawatts. It should be noted that 𝐿𝑣𝑖𝑠𝑖𝑏𝑙𝑒  is not corrected for background 

contamination (e.g. city lights) or moonlight. For example, the presence of intensive city lights in 

a fire pixel can result in overestimation of fire radiance. However, most of the wildfires happen in 
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remote areas with almost no background contamination (𝐿𝑣𝑖𝑠𝑖𝑏𝑙𝑒 ≈ 0). Also, the radiance from a 

full-moon do not exceed 10 nW·cm-2·sr-1 (Román et al. 2018) which is comparable to 𝐿𝑣𝑖𝑠𝑖𝑏𝑙𝑒  of 

only around 3% of 2017 fire pixels ( If we assume that all the fire pixels are under full moon 

condition). Once the 𝑉𝐿𝑃  is obtained for the pixel, VEF can be calculated as follow: 

𝑉𝐸𝐹= 
𝑉𝐿𝑃  

𝐹𝑅𝑃
                               (8) 

where FRP (in megawatts) is the fire radiative power for the fire pixel. The major uncertainty 

source for VEF is heavy smoke plumes. Light is more extinct and scattered in the visible spectrum 

(e.g. 0.7 µm) than infrared (e.g. 4 µm). Consequently, VLP is more affected than FRP which means 

the VEF ratio suffers from underestimation under heavy smoke conditions. We simulate VEF 

using UNL-VRTM for different fire temperatures (Table S5) and a smoke optical depth around 

0.1. We compare the simulated VEF with the 2017 fire pixels VEF values to determine the 

approximate dynamic range for VEF. For example, the maximum VEF value (≈ 0.25) in our data 

belongs to gas flare pixels which is close to the simulated VEF value (≈0.28) for a temperature of 

2400 k. Also, we find out that the minimum VEF value (≈ 2.9 × 10-9) in 2017 fire pixels 

corresponds to a temperature around 570 k in simulation. This temperature, though different, is 

somewhat near the minimum detectable fire temperatures by DNB.   
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CHAPTER 4. RESULTS AND DISCUSSIONS 

4.1. Resampling DNB radiance to M-band footprint 

Fig. 7 a & b show a case of resampling DNB radiances into the M-band pixel resolution 

by applying the collocation LUT. Before the collocation, the bright DNB radiances distinguishes 

them from the larger M-band pixel footprint (red rectangles). These pixels are retrieved by VIIRS 

on 12 December 2017 (10:24 am UTC) over California where the Thomas wildfire took place. 

After collocating the DNB radiances based on their respective areas intersected with the M-band 

pixel footprint, the bright DNB pixels are smoothed over the M-band pixel area which indicates 

conservation of energy over the area as a result of the area-weighting resampling (Fig. 7b). 

Also, to illustrate the effectiveness, we compare our collocation method results with the 

nearest-neighbor method, which is highly used for collocation processes in satellite remote sensing 

data, by correlating collocated DNB radiances to the brightness temperature values for 852 

nighttime fire pixels (Thomas fire) detected by VIIRS AF from 5 December to 12 January 2017 

(note the data are at log scale). Fig. 7c shows when the collocation is only based on the nearest 

pixel method (i.e. the nearest DNB pixels to an M-band pixel in the same scan line are remapped 

to M-band footprint), the resampled radiances do not show a promising correlation (R=0.21) with 

the corresponding 4 𝜇m brightness temperature (BT4) values while when the collocation LUT 

method is applied, the collocated radiances are more reliable and well correlated (R=0.61) with 

the M-band pixels BT4
4 (the fire pixel energy) values (Fig. 7d). 
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Fig. 7. An example of resampling nighttime DNB pixels radiances to M-band pixels using 

collocation LUT method for Thomas wildfire on December 12, 2017. (a) Zoom-in view of the 

original DNB radiances (bright squares) before the collocation. (b) The DNB radiances after 

collocation to the M-band footprint (red rectangles). (c) Scatter plot of BT4
4 and collocated DNB 

radiances for VIIRS AF (nighttime) fire pixels (Thomas wildfire) during the December 5 to 

January 12, 2017 period when only the nearest DNB pixels in each scan line are collocated to the 

M-band pixel footprint without considering the across-scan offset. The low correlation coefficient 

indicates the low accuracy of the nearest-neighbor collocation method. (d) Same as Fig. 7c, but 

here the collocation LUT method results in a high correlation between the collocated DNB 

radiances (both across and along the scan) and the corresponding M-band pixel BT4
4 values. 
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4.2. Fire combustion phase based on the VEF 

Each vegetation type follows a specific combustion phase (smoldering/flaming or a 

mixture of them) based on its chemical compound, fuel content, relative humidity, and fire 

temperature. As Fig. 8a shows, although almost all fire types have a similar FRP range, their VEF 

ranges are different from each other which indicates that VEF can successfully characterize 

different fire combustion phases (note that each point VEF and FRP is an annual-averaged value 

for a 0.05˚ grid for 2017). It is because FRP represents the power of the fire which is dependent 

on the fire size and intensity. For instance, FRP is the same for a large smoldering fire and a small 

intense flaming fire (Peterson et al. 2013). Hence, FRP is not capable of detecting fire combustion 

phase, while VEF is a ratio unique for each fire pixel representing its combustion phase. For 

example, our results show gas flares VEF values are clustered on the top of all the other fire types 

which is expected as they consist of pure flames. Furthermore, Fig. 8a shows that all the forest 

land cover types have smaller VEF comparing to savanna, grassland and shrubland indicating they 

have a smaller MCE which is consistent with the literature (Reid et al. 2005). In Fig 8b, we show 

the VEF and FRP distributions for only three fire types to better visualize and illustrate that 

although, each of the gas flare, shrubland and evergreen broadleaf forest fire types are clustered in 

a specific range different than others, they still can be highly variable in that range because even 

if for the same vegetation type, the fire combustion phase still can vary due to the  differences in 

the fire temperature and relative humidity. This interesting result indicates that VEF has the 

potential to in part describe the variation of fire combustion phase by each fire pixel 

We show the ln(VEF) probability density function (PDF) for each of the fire types in the 

fig. 8c. Note, We also plot the not-averaged data, and the results are almost identical (Fig. S4). 

Shrubland, grassland, and cropland are spread over a similar ln(VEF) range. The average of VEF 
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values for each MODIS land cover type are shown in Table S6. Shrubland fire type, for example, 

is more flaming as its PDF has a peak in a larger ln (VEF) than the other two fire types. Savanna’s 

PDF covers a wide range with a peak around -7 (corresponds to a VEF value of 0.00091). It has a 

longer tail on the left side of its peak meaning that it has more fires in the smoldering phase 

comparing to Shrubland. The forest fires PDFs ranges are lower comparing to other fire types 

because the forests generally burn with less MCE comparing to shrublands or grasslands. Mixed 

forest fires have a larger peak comparing to the other forest fires peaks. Also, mixed forest has a 

small peak around -5 (corresponds to a VEF value of 0.0067) which is very high and indicates a 

dominant flaming fire phase. Finally, gas flares are mostly located over the highest range from -

5.5 to -3.5 which is consistent with the fact that they have dominant flaming combustion. 

 

Fig. 8. (a) Scatter plot of different fire types VEF and FRP values. The fire types are based on the 

different vegetation types (Table 2) plus gas flares. Each point on the scatter plot represent a 0.05˚ 

grid average VEF (y-axis) and FRP (x-axis) values for 2017 (only nighttime). Different fire types 

are clustered by their VEF value ranges while they have a similar FRP range. (b) Same as Fig. 9a, 

but here only three fire types are presented for better visualization. Gas flares have the highest 

VEF range while EBF has the lowest VEF clustered under the shrublands. (c) The probability 

density functions (PDF) for different vegetation types showing their VEF distribution for the year 

2017. Sava, shrub, grass, and crop ln(VEF) values are mostly distributed from -8 to -5 while 

different forest types are from -10 to -7 and gas flares are mostly spread in the highest range from 

-6 to -3. 
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4.3. VEF Global Distribution 

Fig. 9a shows a global map of averaged nighttime VEF (1˚grids) for 2017. Also, we show 

the MODIS Global landcover map to better visualize the relationship between land cover types 

and the VEF (Fig. 9c). Note, we replot the global maps at a 0.25˚grid level which yield similar 

results comparing to maps at 1˚grid level (Fig. S5). We see from the VEF map that the savanna 

regions in Middle America (Consists of Mexico, Central America, Caribbean, Columbia, and 

Venezuela) have lower VEF comparing to Africa savanna which means that they are included in 

the left tail of savanna’s PDF (Fig. 9c). Furthermore, according to  Fig. 9a zoomed-in subplots,  

open shrublands in Australia burn mostly with a flaming phase as they have high VEF values 

which distinguish them from evergreen needleleaf forest type in North America with low VEF 

values indicating the smoldering type. In general, it is apparent from the map that the forest land 

covers, regardless of the type, have a lower VEF in comparison to savannas, shrublands, 

grasslands, and croplands. For example, in South America, the VEF changes from high values to 

smaller values as biomes transit from grasslands and savannas to evergreen broadleaf forests. The 

same scenario is seen in Australia, North America, and Africa. Also, the red grids that have the 

highest VEF are mostly corresponding to the gas flares in Middle East, North Africa, Russia, and 

Mexico. In contrast to the VEF, global map of nighttime averaged FRP (1˚grids) (Fig. 9b) is not 

showing the transitions between different fire types clearly. For example, gas flares are not 

detectable as their FRP range is similar to the other fire types, or as the zoomed-in subplots show, 

the FRP spread is similar for Shrublands in Australia and evergreen needleleaf forest in  North 

America while the two land cover types are very different. This indicates that, as expected, the 

main driver of the mean-state VEF for each grid is VLP (Fig. S6). However, zoomed-in subplots 

in Fig. S6 shows that the gas flares are better separated from shrublands in the VEF map because 
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unlike VLP, VEF is not driven by the fire size. For example, Fig. S7 in supplementary material 

shows cases of fire pixels with large VEF values (e.g. more than 0.2), but not large VLP values. 

We found out that these fires pixels correspond to gas flares in Venezuela indicating that VEF can 

rigorously distinguish between small fires with intense flaming combustion phase and large fires 

with smoldering combustion phase. 
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Fig. 9. (a) Global map of VEF for 2017. Each 1˚ grid represents the average VEF value for the 

year 2017. The VEF map shows the transition from forest land cover type in North America (lower 

VEF) to shrublands in Australia (higher VEF). The red grids (highest VEF) are mostly 

corresponding to the gas flares while the lowest VEF (blue color) are where the evergreen forests 

are. There are no detected nighttime fire pixels in polar regions including Greenland and Alaska 

due to the long day length (more than 20 hours) during their fire seasons in summer. (b) Global 

map of FRP for 2017. Each 1˚ grid represents the average nighttime FRP value for the year 2017. 

The FRP map is not capturing the fire combustion phase differences based on the land cover type 

as the FRP spread for shrubland and forest are similar. (c) Global landcover map generated based 

on the MODIS Land Cover Type Climate Modeling Grid for the year 2017. The land cover 

categories are according to IGBP scheme. 



www.manaraa.com

32 

 

4.4. VEF Comparison with MCE 

Although VEF is available for each nighttime fire pixel individually, there are limited in-

situ measurement data, which coincide with the VIIRS overpass, to compare our VEF values with 

MCE on a pixel level. As a result, we use GFED4 data which provides emission estimations of 

CO and CO2 at a resolution of 0.25˚. However, the GFED grid-based MCE is derived based on 

both day and night fire data, which leads us to derive annual-averaged VEF and MCE to obtain a 

mean-state of each land cover type/region. We calculated annual-averaged VEF for different 

surface types for 2015 and compare with their MCE values derived from GFED4. We show that 

ln(VEF) is highly correlated (R=0.89) with MCE for different biomes (Fig. 10a). Furthermore,  

Fig. 10b shows that the regional averaged VEF and MCE are correlated with each other confirming 

the strength of VEF in capturing the fire combustion phase. These results suggest that VEF is a 

strong indicator for fire MCE based on the fire type and combustion conditions (e.g. relative 

humidity). In other words, GFED-based MCE can be estimated for each nighttime fire pixel on a 

near real-time basis by taking advantage of its linear relationship with VEF: 

MCE = 0.016×ln(VEF) + 1.061   (9) 

However, it should be noted that the MCE calculated from equation 9 includes errors/uncertainties 

from both GFED and VEF sources, and it is simply a step forward towards improving emission 

estimations on a near real-time basis. 
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Fig. 10. (a) Scatter plot of annual-averaged (2017) GFED4 MCE and ln(VEF) for different biomes. 

Correlation coefficient is 0.92 indicating VEF is a successful indicator of fire combustion phase 

for different biomes. (b) Scatter plot representing the regional MCE and VEF relationship. Each 

point represents GFED4 MCE (y-axis) and the natural logarithm of VEF (x-axis) averaged for a 

GFED4 basic region during 2015.   

Fig. 11 shows the global map of MCE for 2017. Each grid value computed from the pixel 

VEF values linked to the MCE by equation 9. As expected, gas flares have the highest MCE while 

the forest land cover types have the lowest values. The same approach can be applied to each pixel 

VEF and once MCE is calculated for each fire, it can be applied to correct emission factors for 

each pixel. For example, the CO2 emission factor for a specific biome can be adjusted based on its 

MCE as higher MCE (VEF) indicates an increase in CO2 emission factor as the fire burns in 
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flaming phase emitting larger amounts of CO2. The advantage of VEF is, it is retrieved from 

satellite data while the fire is active, appropriate for improving emissions estimations. 

 

Fig. 11. Global map of MCE for each 1˚ grid which are calculated based on their VEF values for 

2015. The Australia shrublands have a high MCE while the forest land cover type areas represent 

low MCE. The gas flares have the highest MCE. 

 

4.5. Camp Fire 

  We show the VEF capability in defining the fire combustion phase in Camp fire case 

study and calculate the fire average MCE for each night. On 8 November 2018, the California 

deadliest (86 fatalities) and most destructive (US$ 16.5 billion damage) wildfire, was started in 

Butte County, Northern California. According to the California department of forestry and fire 

protection reports, the Camp Fire burned an area of around 153,336 acres before it was fully 

contained on 25 November with the help of the rain. The most intense phase of the fire was in its 

first four days when the wind speed (22 m/s) facilitated more rapid fire growth which resulted in 

Camp Fire burning more than 110,000 acres and destroying Paradise town (www.fire.ca.gov). 
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Camp Fire is an ideal candidate to investigate VEF capability to show the wildfire intensity 

throughout its lifetime. 

As Fig. 12a  shows, the VEF (daily-averaged for nighttime fire pixels) is largest (highly 

flaming) during the first 4 nights of the fire and then starts to reduce. This is consistent with the 

fact that fire was most destructive in the first four days. The MCE, which was calculated based on 

equation 9, follows a very similar pattern as VEF. Note that the fire was started on November 8 

around 6.33 am local time so the first satellite nighttime observation was on November 9.  We 

show how the fire grew by time for all the nighttime fire pixels in Fig. 12b.  Also, we show the 

VEF has been increased from lower values (November 10) to higher values (November 11) for the 

fire pixels that are almost in the same areas on the ground (Fig.12 c&d). Fig. S8 shows both VLP 

and FRP effectively derive VEF for the fire pixels. The change in VEF indicates that the fire grew 

to a more flaming phase during this 24-hour period which is not observable in the FRP time series 

indicating of the limited capability of FRP to capture the fire intensity through its lifetime. 
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Fig. 12. (a) Time series of FRP (black solid line), VEF (red dashed line), and MCE (green dashed 

line) derived from the nighttime fire pixels. November 11, 2018 is the peak in the VEF indicating 

of highly flaming fire phase. (b) The map of all nighttime fire pixels VEF values during the Camp 

Fire. (c) Observation of Camp Fire intensity on November 10,  2018 when most the fire pixels are 

in an early stage of their lifetime. (d) Fire intensity increases comparing to the previous day as the 

fire reaches to a flaming phase on November 11, 2018. Note, the fire pixels for these two days are 

extracted only from one satellite orbit observation in that day. The background base map is from 

ESRI (Environmental Systems Research Institute) world imagery service. 
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CHAPTER 5. CONCLUSIONS 

VIIRS DNB provides broadband visible radiance for each pixel. When there is a fire preset 

in the pixel during the night, this radiance contains information/signal from the flames of the fire 

(assuming no background contamination). However, VIIRS fire product is based on the M-band 

(or I-band) which has a different pixel footprint from DNB, and hence the valuable DNB radiance 

cannot be applied directly to the VIIRS fire pixels. In this study, first, we presented an algorithm 

for collocating VIIRS DNB radiances to M-band pixel footprint, which makes the hybrid usage of 

DNB and M-bands data possible. Second, this collocated visible radiance enabled us to develop a 

ratio representing the visible fraction of the fire energy, which is expected to show a quantitative 

measure of the fire combustion phase. 

The collocation algorithm is based on an accurate area-weighting method. We chose a 

VIIRS scan near the equator, and divided it into smaller segments before projecting the pixels onto 

the earth’s surface to make the distortion’s errors minimum. We implemented the collocation 

process for each segment separately. The algorithm finds the overlapped DNB pixels both along 

and across the scan for every M-band pixel, and calculates the corresponding DNB area weights. 

These weights are stored in a look-up table based on the indices of the pixels. Consequently, taking 

advantage of the fixed alignment between DNB and M-band pixels in every VIIRS scan, the LUT 

can be applied to any VIIRS granule across the globe. Also, these DNB  area weights provided a 

reliable criterion to decide whether to keep or exclude an M-band pixel in the case of the redundant 

M-band pixels which are overlapped from two consecutive scans due to the along-scan pixel 

growth size. Our results showed that our collocation method is more reliable than the famous 

nearest-neighbor method as our method results in a much higher correlation between the collocated 
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DNB radiances and the corresponding M-band pixels BT44 (the fire pixel energy) values for the 

852 nighttime VIIRS fire pixels from California Thomas fire. 

We used the resampled DNB radiance to develop the parameter visible light power (VLP). 

The VLP is the energy from fire flames for each pixel during the night, and its ratio by FRP yields 

visible energy fraction (VEF) of the pixel. VEF theoretically should be able to show a quantitative 

measure of the fire combustion phase (smoldering/flaming). The uncertainty sources in VEF 

include background contamination (e.g. moon effect and city lights) and light attenuation by thick 

smoke plumes. Although the moon effect is small, intense city lights and thick smoke plume can 

result in overestimation and underestimation of VEF respectively. Our results demonstrated how 

VEF successfully characterizes mean-state (annual-averaged) combustion phase of fires based on 

their fuel (vegetation) type at a pixel and grid level. For example, VEF values for gas flares are 

distributed in a higher range comparing to other land cover types while the FRP values for all the 

land cover types (including gas flares) are similarly distributed. An initial assessment of VEF 

showed that annual-averaged VEF is highly correlated to the mean-state MCE (derived from 

GFED data) for the general biomes used by GFED. This suggests that the VEF can be used to 

predict the GFED-based MCE which is a step forward towards enhancing emission estimation for 

each fire uniquely based on that fire characteristics. For example, we applied VEF to calculate 

GFED-based MCE for a real wildfire (Camp Fire) at a pixel level. Overall, this study demonstrated 

the theoretical development of VEF and its potential to measure the fire combustion phase. The 

results of this work encourage further research to be focused on the application of VEF to enhance 

the EFs at a pixel level. For example, VEF can be linked to in situ MCE at a pixel level upon the 

availability of data from different field campaigns which are specifically designated for the VIIRS.
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APPENDIX 

A.1. Collocation look-up table 

Once the collocation and bow-tie effect detection are completed, we store the results in a look-up. 

M-band scan is a 2-dimensional array of pixels with 16 rows and 3200 columns. We ravel this 2-

dimensional array to a 1-dimensional array yielding an array with 16×3200 elements with every 

sixteen elements corresponds to a row in the 2-dimensional array. Also, we ravel the 2- 

dimensional pixel array of the DNB scan zone to a 1-dimensional array starting from 1 to 16×4064.   

In this way, we can use the 1-dimensional array values (1 to 16×4064) to denote the collocated 

DNB indices for each M-band pixel. There are four variables stored in the look-up table. First 

variable called “Collocated_DNB_Indices” which is a 2-dimensional array with 12 rows and 

16×3200 columns. Each value is a number from 1 to 16×4064 corresponding to the indices of DNB 

pixels. Every 3200 columns in each row represent a row in the 2-dimensional array of unraveled 

M-band pixels. Also, the 12 rows in Collocated_DNB_Indices array denotes the maximum number 

of DNB pixels that can overlap a single M-band pixel. Fig. 2b shows near the edge of the scan 

zone 12 DNB pixels cover a single M-band pixel. As a result, each M-band pixel can have 12 or 

less DNB pixels collocated to it. Hence, if an M-band pixel has 10 collocated DNB pixels, 10 rows 

will contain values and the other two will be set as zero. The second look-up table variable 

“DNB_Weights” is an array with the same dimension as “Collocated_DNB_Indices”, but the 

elements represents the weight (0 to 1) for each collocated DNB pixel. The third variable “M-

band_Overlapped” is a 2-dimensional array with the same dimension as the M-band scan zone 

(16×3200). In this array the overlapped pixels have the value of -999.7 while all the other pixels 

have the fixed value 1. The last variable which is called “M-band_Areas” is a 2-dimensional array 

(16×3200) with each element containing the area for the corresponding M-band pixel in m2. 
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A.2. Tables 

Table A1. VIIRS bands spectral characteristic. 

Band Spectral Range (µm) Central Wavelength (µm) 

M1 0.402 - 0.422 0.412 

M2 0.436 - 0.454 0.445 

M3 0.478 - 0.488 0.488 

M4 0.545 - 0.565 0.555 

M5 0.662 - 0.682 0.672 

M6 0.739 - 0.754 0.746 

M7 0.846 - 0.885 0.865 

M8 1.23 - 1.25 1.240 

M9 1.371 - 1.386 1.378 

M10 1.58 - 1.64 1.61 

M11 2.23 - 2.28 2.25 

M12 3.61 - 3.79 3.7 

M13 3.97 - 4.13 4.05 

M14 8.4 - 8.7 8.55 

M15 10.26 - 11.26 10.763 

M16 11.54 - 12.49 12.013 

I1 0.6 - 0.8 0.64 

I2 0.85 - 0.88 0.865 

I3 1.58 - 1.64 1.61 

I4 3.55 - 3.93 3.74 

I5 10.5 - 12.4 11.45 

DNB 0.5 - 0.9 0.7 
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Table A2. VIIRS M-band aggregation scheme (from left end of the scan to the nadir). 

Aggregation zones 

from nadir 

Samples aggregated per pixel M-band pixel Index1 range 

Along scan Across scan 

1 3 1 1:640 

2 2 1 641:1008 

3 1 1 1009:1600 

1 The M-band pixel index in each scan line starts from 1 (left side of the scan) and ends at 3200 (right side of the scan) 
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Table A3. VIIRS DNB aggregation scheme (from left end of the scan to the nadir). 

Aggregation zones 

from nadir 

Samples aggregated per pixel DNB pixel index2 range 

Along scan Across scan 

1 66 42 1848:2032 

2 64 42 1776:1847 

3 62 41 1688:1775 

4 59 40 1616:1687 

5 55 39 1536:1615 

6 52 38 1464:1535 

7 49 37 1400:1463 

8 46 36 1336:1399 

9 43 35 1272:1335 

10 40 34 1208:1271 

11 38 33 1144:1207 

12 35 32 1064:1143 

13 33 31 1008:1063 

14 30 30 928:1007 

15 28 29 857:928 

16 26 28 785:856 

17 24 27 713:784 

18 23 27 681:712 

19 22 26 633:680 

20 21 26 601:632 

21 20 25 553:600 

22 19 25 513:552 

23 18 24 457:512 

24 17 24 417:456 
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Table A3 - continued    

25 16 23 345:416 

26 15 23 321:344 

27 15 22 289:320 

28 14 22 225:288 

29 13 21 161:224 

30 12 21 97:160 

31 12 20 81:96 

32 11 20 1:80 

2 The DNB pixel index in each scan line starts from 1 (left side of the scan) and ends at 4064 (right side of the scan). 
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Table A4. VIIRS DNB to M-band collocating segments (from left end of the scan to right end). 

Collocation segment DNB pixel index range M-band pixel index range 

1 1:97 1:44 

2 97:224 45:112 

3 224:320 113:172 

4 320:417 173:238 

5 417:512 239:311 

6 512:601 312:386 

7 601:681 387:462 

8 681:785 463:569 

9 785:857 570:645 

10 857:929 646:689 

11 929:1009 690:741 

12 1009:1065 742:781 

13 1065:1115 782:842 

14 1145:1209 843:895 

15 1209:1273 896:951 

16 1273:1337 952:1010 

17 1337:1402 1011:1053 

18 1402:1465 1054:1098 

19 1465:1537 1099:1152 

20 1537:1617 1153:1216 

21 1617:1689 1217:1278 

22 1689:1777 1279:1357 

23 1777:2033 1358:1600 

24 2033:2288 1601:1841 

25 2288:2376 1842:1980 

26 2376:2448 1921:1982 
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Table A4 - continued   

27 2448:2528 1983:2046 

28 2528:2600 2047:2100 

29 2600:2665 2101:2146 

30 2665:2728 2147:2188 

31 2728:2792 2189:2246 

32 2792:2856 2247:2302 

33 2856:2920 2303:2355 

34 2920:3000 2356:2416 

35 3000:3056 2417:2456 

36 3056:3136 2457:2508 

37 3136:3208 2509:2552 

38 3208:3280 2553:2625 

39 3280:3384 2626:2733 

40 3384:3464 2734:2808 

41 3464:3553 2809:2883 

42 3553:3648 2884:2996 

43 3648:3744 2957:3022 

44 3744:3841 3023:3082 

45 3841:3968 3083:3151 

46 3968:4064 3152:3200 
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Table A5. Simulated VEFs for different temperatures with a uniform background aerosol optical 

depth around 0.1 (smoke particles) using UNL-VRTM. 

Fire Temperature (k) VEF 

400 2.06 × 10-13 

500 1.31 × 10-10 

600 1.04 × 10-8 

700 2.46 × 10-7 

800 2.68 × 10-6 

900 1.75 × 10-5 

1000 7.93 × 10-5 

1100 2.75 × 10-4 

1200 7.84 × 10-4 

1300 1.91 × 10-3 

1400 4.11 × 10-3 

1500 8.04 × 10-3 

1600 1.44 × 10-2 

1700 2.44 × 10-2 

1800 3.89 × 10-2 

1900 5.91 × 10-2 

2000 8.63 × 10-2 

2100 1.21 × 10-1 

2200 1.66 × 10-1 

2300 2.22 × 10-1 

2400 2.89 × 10-1 
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Table A6. Annual-averaged VEF for different biomes and gas flares. 

Biome VEF 

Evergreen needleleaf forest 1.74 × 10-4 

Evergreen broadleaf forest 3.65 × 10-4 

Deciduous needleleaf forest 1.68 × 10-3 

Deciduous broadleaf forest 4.74 × 10-4 

Mixed forest (MF) 1.19 × 10-3 

Closed shrublands 1.02 × 10-3 

Open shrublands 2.33 × 10-3 

Woody savannas 5.11 × 10-4 

Savannas 8.86 × 10-4 

Grasslands  1.38 × 10-3 

Croplands  1.25 × 10-3 

Cropland/Natural vegetation mosaic 1.80 × 10-3 

Peatland 4.42 × 10-5 

Gas Flare 1.07 × 10-2 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

51 

 

 

A.2. Figures 

 

Fig. A1. Global map of VIIRS AF nighttime fire pixels for 2017. Each 1˚ grid represents the count 

number of fire pixels. 

 

 

Fig. A2. Global map of gas flares used in this study. The background base map is from ESRI 

(Environmental Systems Research Institute) world imagery service. 
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Fig. A3. Collocation segment 7 consists of projected DNB (green pixels) and M-band pixels 

(red). 
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Fig. A4. The probability density functions (PDF) for different vegetation types showing their VEF 

and FRP distributions (at the pixel level) for the year 2017. The distribution of FRP is similar for 

almost all of the fire types while VEF distinguished different vegetation types. 
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Fig. A5. (a) Global map of VEF for 2017. Each 0.25˚ grid represents the average VEF value for 

the year 2017. The VEF map shows the transition from forest land cover type in North America 

(lower VEF) to shrublands in Australia (higher VEF). The red grids (highest VEF) are mostly 

corresponding to the gas flares while the lowest VEF (blue color) are where the evergreen forests 

are. There are no detected nighttime fire pixels in polar regions including Greenland and Alaska 

due to the long day length (more than 20 hours) during their fire seasons in summer. (b) Global 

map of FRP for 2017. Each 0.25˚ grid represents the average nighttime FRP value for the year 

2017. The FRP map is not capturing the fire combustion phase differences based on the land cover 

type as the FRP spread for shrubland and forest are similar. (c) Global landcover map generated 

based on the MODIS Land Cover Type Climate Modeling Grid for year 2017. The land cover 

categories are according to IGBP scheme. 
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Fig. A6. (a) Global map of VEF for 2017. Each 1˚ grid represents the average VEF value for the 

year 2017. The VEF map shows the separation between gas flares in Middle East and shrublands 

in Australia. (b) Global map of VLP for 2017. Each 1˚ grid represents the average nighttime VLP 

value for the year 2017. Although the VLP is showing to be the main driver of mean-state VEF 

for each grid, the gas flares are better distinguished in VEF map as it is not driven by fire size 

unlike VLP. 
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Fig. A7. Scatter plot of VEF and VLP (MW) for VIIRS AF (nighttime) fire pixels for 2017. There 

are pixels with very large VEF (e.g. more than 0.2), but not large VLP. These fire pixels are from 

gas flares in Venezuela indicating that VEF is capable of distinguishing between small flaming 

fires and large smoldering fires. 
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Fig. A8. (a) Observation of Camp Fire visible energy on November 10, 2018. (b) Fire VLP 

increases comparing to the previous day as the fire reaches to a flaming phase on November 11, 

2018. (c) The map of Camp Fire nighttime fire pixels FRP values on November 10, 2018. Note 

how high FRP, which can be due to the large fire size, derive VEF (Fig. 12c) of the fire pixels. (d) 

Observation of Camp Fire FRP on November 11, 2018. Note, the fire pixels for these two days are 

extracted only from one satellite orbit observation in that day. The background base map is from 

ESRI (Environmental Systems Research Institute) world imagery service. 
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